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ABSTRACT. Amoebae (30–45 µm long) were isolated from laminated microbial mats from Las 

Salinas of Cabo Rojo, Boquerón Forest, Cabo Rojo (near Mayagüez), Puerto Rico. Three sets of 

experiments were performed to monitor amoebal growth in ambient oxygen (O2), low O2, and anoxic 

(no oxygen) gas conditions. The amoeba tolerates and grows rapidly under all tested conditions. 

These were cultured by use of the same methods as used for Paratetramitus jugosus, a Vahlkampfiid 

monopodial amoeba (10–15 µm in size), from different geographical areas, such as Delta del Ebro, 

Spain, Laguna Figueroa in Baja California del Norte, Mexico, and Eel Pond in Woods Hole, 

Massachusetts, USA. The amoeba from Las Salinas of Cabo Rojo differs from P. jugosus in length 

(30–45 µm), width (1–2 µm), and cyst size (20–25 µm). This amoeba also exhibits an amoebomastigote 

stage (15–20 µm). Thus, we confirm that Las Salinas of Cabo Rojo amoebae not only tolerate but 

grow abundantly under ambient O2, low O2, and anoxic conditions. 
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Laminated microbial mats are complex 

community structures defined by both physical 

(e.g., light and temperature) and chemical (e.g., 

oxygen and salinity) abiotic factors (Franks and 

Stolz, 2009). They are found in environments 

ranging from salt marshes and oceanic sediments 

to arctic dry valleys (Brune et al., 2000; Franks 

and Stolz, 2009). Microbial mats have well-

established oxygenic and non-oxygenic modes of 

metabolism and respiration for phototrophy 

(Brune et al., 2000; Franks and Stolz, 2009). 

For example, primary producer photoautotrophs, 

such as, cyanobacteria, and 

chemolithoautotrophs, such as, sulphur oxidizing 

bacteria, inhabit lithified mats (Golubic, 2000; 

Strother and Barghoorn, 2000; Margulis and 

Chapman, 2010; Campbell et al., 2019). 

Bacteria and other microorganisms hold down 

different layers of laminated microbial mats, 

preserving them for long periods of time if they 

remain undisturbed. However, grazing and 

burrowing by aquatic animals can destroy mats 

as quickly as they form (Golubic, 2000).  

Microorganism growth in anoxic (no oxygen) 

environments mostly occurs from fermentation 

by anaerobic respiration; however, anaerobic 

respiration is part of a redox potential difference 

between the donor substrate and oxidant, which 

leads to cell growth (Plugge, 2005). Historically, 

the growth of microorganisms in low oxygen and 

anoxic environments has been mostly related to 

oceanic anoxic events (Pacton and Gorin, 2014) 

and as an adaptation mechanism of microbial 

activity present in oxic-anoxic environments 

(Brune et al., 2000). A recent study has 

investigated the mineralization and the 

morphology of microbial mats on the shoreline in 

south-western Puerto Rico (Rodriguez-Colon et 

al., 2019). Yet, amoebae growth under different 

levels of oxygen in microbial mats has not been 

previously studied in this area. Here, the growth 

of an intertidal laminated microbial mat amoeba 

that grows under ambient oxygen (O2), low O2, 

and anoxic gas conditions from Las Salinas (salt 

flats) of Cabo Rojo, Boquerón Forest, is reported, 

Cabo Rojo is near Mayagüez in south-western 

Puerto Rico (Figure 1). To the best of my 

knowledge, this is the first study to report the 

growth of a desiccated amoeba in laminated 

microbial mats from Las Salinas of Cabo Rojo, 

Puerto Rico under ambient, low O2 and anoxic 

conditions. 

Las Salinas of Cabo Rojo formed from a shift of 

tectonic plates approximately 190 million years ago 

mostly from Jurassic to Eocene volcanic and 

plutonic rocks (Cheadle, 2015). The shift created 
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Figure 1. The location of Las Salinas of Cabo Rojo, 

Boquerón Forest, Cabo Rojo, Puerto Rico (Data 

source: NOAA); B is a Google Earth satellite image 

(© 2016 Google Inc.). 

 

 
Figure 2. The laminated microbial mats for this study 

are from the Candelaria Inlet (shown by the white 

arrow). 
 

the Sierra Bermeja, the oldest mountain range in 

Puerto Rico that is located to the northeast, and Los 

Morrillos, found to the south, allowing the 

formation of the Las Salinas of Cabo Rojo 

(Weaver and Schwagerl, 2009). Today, Las 

Salinas of Cabo Rojo has rocky shorelines 

composed of limestone and volcaniclastic rocks 

with alluvial deposits, beaches, wetlands, and 

mangrove shorelines (Morelock et al., 2000). Las 

Salinas of Cabo Rojo are a sub-tropical dry forest 

consisting of many ecosystems, such as dry forest, 

hypersaline lagoons, salt flats, marine lagoons, 

mangrove forest, seagrass meadow, and coral reefs 

(C.P.S.A., 2020).  

The Salinas of Cabo Rojo were flooded in the 

winter between 2005 and 2006. It is not clear in 

precisely which months the flooding occurred, but 

Dr. Carlos Ríos Velázquez (oral communication, 

2009) mentioned that the area suffered from severe 

flooding both in 2005 and 2006. The laminated 

mats were estimated at the time to be 

approximately 60–65 years old. This preservation of 

the mats has been possible because Las Salinas of 

Cabo Rojo is part of the protected Cabo Rojo 

National Wildlife Refuge where the mats have been 

undisturbed by grazing and burrowing animals. 
 

Amoebae (30-45 µm) were collected from 

laminated microbial mats in the Candelaria Inlet in 

November 2009 (Figure 2). The samples had been 

drying for approximately one year before the 

laboratory experiments were performed. The 

samples were isolated into monoprotist cultures in 

the laboratory. The amoebae were cultured by the 

same methods as Paratetramitus jugosus collected 

from laminated microbial mats at Laguna Figueroa, 

Baja California del Norte, Mexico, and from mud at 

Eel Pond, Woods Hole, Cape Cod, Massachusetts, 

USA (Margulis et al., 1990; Read et al., 1983; 

Santiago-Ramírez, 2011). Three sets of plates of 

desiccated microbial mat samples were inoculated 

in the sterilizing hood. Approximately 1 mm3 of mat 

sediment sample was cut and placed directly in the 

centre of each thin, translucent, sterile agar plate 

containing manganese acetate media. Immediately 

after placement, 1 ml of distilled water was added to 

the dry sample by dropper. This suspended the 

organisms and initiated feeding, growth, and 

reproduction (Margulis et al., 1990). 
 

Sets of inoculated manganese acetate plates were 

then incubated under three different conditions. The 

control, a Brewer’s jar without any gas pack, was 

subject to ambient air (20% O2). The second and 

third sets were placed in jars under low O2 and 

anoxic gas conditions, respectively. All the jars 

were incubated at ambient temperature (25ºC). The 

other ambient conditions (e.g., temperature, diurnal 

light cycle) were maintained constant for all three 

sets of jars. Anoxia in the jars was maintained by a 

GasPak® EZ hydrogen (H2) + carbon dioxide (CO2) 

with palladium catalyst and a GasPak® EZ 

anaerobe container system with indicator. All the 

plates were inoculated immediately following the 

preparation of the manganese acetate medium. 

Sterilized water also was used to flood and then wet 

the sample when the plates were inoculated.  

The desiccation of an amoeba (30–45 µm) was 

found in intertidal laminated microbial mats 

(Figure 3). This amoeba forms cysts (20–25 µm) 

and survives desiccation (Figures 3-4) (Margulis et 

al., 1990; Page, 1983). Furthermore, the mat 

amoeba grows well under low O2 (Figures 4-5A) 

and anoxic conditions (Figure 5C) and exhibits an 

amoebomastigote stage (Figure 5B).  

The amoeba from Las Salinas of Cabo Rojo is 

extremely similar in life history to P. jugosus (e.g., 

Read et al., 1983; Margulis et al., 1990) and to the 
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Figure 3. Amoebae (shown by the white arrow) and 

cysts (shown by the black arrow) in control samples. 

An interface is shown between wet and dry conditions 

(from left to right).  

 

 
Figure 4. Amoebae and cysts in low oxygen gas 

conditions, 200x. 

 

amoebae first described in California by Wherry 

(1913) and at Woods Hole, Massachusetts by 

Hogue (1914). The amoeba (30–45 µm) differs 

from P. jugosus in being polypodial, and very thin, 

 
Figure 5. A is an amoeba in low oxygen gas conditions; 

B shows an amoebomastigote from control samples, C 

is the anoxia sample with bacillus spores and an 

amoeba (shown by the black arrow).  

 

with a smooth glycocalyx (Figures 3, 4, 5A). For 

comparison, preliminary studies were made of 

similar amoeba from different field sites in Europe, 

the United States, Mexico and the Caribbean. The 

amoeba resembles the genus Heteroamoeba from 

the Family Vahlkampfiidae, the same family which 

includes P. jugosus. However, further studies are 

needed for the classification of this amoeba. This 

research confirms that the amoebae from the Las 

Salinas of Cabo Rojo laminated microbial mats 

grow well under ambient O2, low O2, and anoxic 

conditions. The results further our understanding in 

how amoebae respond to environmental changes, 

such as different levels O2 on the south-western 

shoreline of Puerto Rico.  
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