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ABSTRACT. A quantitative assessment of two satellite-derived precipitation estimate (SPE) products - the 

Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) V06, and Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record 

(PERSIANN-CDR) - was conducted in the Caribbean Island of Trinidad. Using a point to pixel evaluation 

method, SPE products were compared to rain gauge records at daily, monthly, seasonal, and annual scales over 

a ten-year period, 2006-2015. Continuous statistical metrics provided information on the level of agreement 

between SPE and rain gauge data, while categorical statistical metrics were used to determine the precipitation 

detection capabilities of SPE products. IMERG generally has weak correlations at all temporal scales assessed, 

while PERSIANN-CDR, has stronger correlations at the monthly (r = 0.62) and dry season (r = 0.59) scales. Both 

SPE products show spatial variability across the island, with generally larger underestimations of rainfall 

experienced in the wetter north-east region of the island, and overestimations occurring towards the west. Over 

the entire time period, PERSIANN-CDR has a higher POD (0.57), lower FAR (0.47), and higher CSI (0.38) than 

IMERG (POD = 0.30; FAR = 0.58; CSI = 0.21). PERSIANN-CDR provides a better representation of seasons 

based on mean monthly rainfall and can be utilised for long-term assessments of monthly rainfall over the 

island. Both SPE products appear to have limitations in detecting the largest intensity rainfall events (> 20 

mm/day), particularly in the wet seasons. Further calibration of both products is recommended to provide more 

improved rainfall estimation over Trinidad. 
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1. INTRODUCTION 

 

Precipitation is a major component of the energy 

and hydrological cycle and influences the global 

climate (Kidd et al., 2017). It is a primary source 

of drinking water (Michaelides et al., 2009) and is 

critical for the social and economic welfare of 

people, particularly in regions dependent on rain-

fed agriculture (Gamble et al., 2010). Rainfall 

influences extreme events such as droughts, floods, 

and storms which have devastating impacts on 

humans and the environment. It is therefore 

important to have long-term historical records of 

precipitation in order to develop better 

understanding of its variability and dynamics, and 

to improve the capacity and resilience of societies 

to respond and adapt to these climate extremes 

(Nguyen et al., 2018). Furthermore, it is essential 

to have reliable rainfall measurements which are 

capable of representing the high spatial and 

temporal variability of rainfall (Barrett, 2001). 

Consequently, the provision of accurate estimates 

of rainfall, would enable an improved 

understanding of climate and water resources for 

societies to create resilient communities (Kidd and 

Huffman, 2011).  

 

Rainfall data can be obtained from a variety of 

sources, including ground-based (rain gauges, 

disdrometers and radars) and satellite-derived 

measurements. Ground-based measurements are 

most commonly made with rain gauges at point-

based locations (New et al., 2001). Since rainfall 

has high spatial variability, the use of point-based 

rain gauge measurements may not always give an 

accurate representation of rainfall conditions over a 

given area. This is true in many regions of the 

world, particularly in developing countries, where 

rain gauge networks are sparse (Hughes, 2006) and 

rainfall events occurring in areas between rain 

gauges may not be accounted for. The establishment 

of dense networks of operational rain gauges to 

capture the spatial variability of rainfall is not 

always possible due to limitations such as economic 

and political issues (Su et al., 2008). To overcome 

these problems, satellite-derived precipitation 

estimate (SPE) products can be utilised for 

monitoring rainfall conditions (Ayugi et al., 2019). 

The use of satellites allows for an economical and 

effective means of determining areal rainfall 

estimates (Artan et al., 2007).  
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SPE products are based on various precipitation 

retrieval methods which can be categorised as 

Vis/IR methods, Passive Microwave Methods 

(PMW), Active Microwave Methods and Muti-

sensor techniques (Kidd and Levizzani, 2011). 

Examples of operational SPE products include 

PERSIANN (Hsu et al., 1997), the Climate 

Prediction Center MORPHing Technique 

(CMORPH) analysis (Joyce et al., 2004), Global 

Satellite Mapping of Precipitation (GSMaP) 

(Kubota et al., 2007), Tropical Rainfall Measuring 

Mission (TRMM) Multi-Satellite Precipitation 

Analysis (TMPA) (Huffman et al., 2007), and 

Global Precipitation Measurement (GPM) mission 

(Hou et al., 2014). SPE products can be utilised in 

applications such as water resource management 

(Filho et al., 2010), hydrological modelling 

(Tramblay et al., 2016), drought and flood 

monitoring (Toté et al., 2015), landslide modelling 

(Rossi et al., 2017) and climate-related studies 

(Miao et al., 2015). However, their utility must 

first be assessed through comparison to ground-

based rainfall measurements to validate their 

accuracy and reliability.  

Rain gauges have frequently been used as 

‘ground truth’ for the validation of SPE products 

(e.g., Dinku et al., 2007). Validation studies have 

been conducted under various climatic conditions, 

such as within the tropics (Tan and Santo, 2018) 

and in arid environments (Katiraie-Boroujerdy et 

al., 2013), and over regions with variable 

topographic conditions (Derin et al., 2016). SPE 

products may show varying results under different 

environmental conditions. As such, Feidas (2010) 

asserts that for any satellite precipitation product to 

be successful, its performance must be 

quantitatively assessed in different regions and 

under seasonal variations. These assessments are 

critical to facilitate the development of satellite 

sensors and to improve the algorithms used to 

generate these products (Tan and Santo, 2018). 

Many studies have focused on assessment of SPE 

products on continental regions, while a few have 

been conducted on island environments (e.g., 

Huang et al., 2018; Caracciolo et al., 2018).  

Many islands within the Caribbean are 

classified as Small Island Developing States (SIDS) 

and are extremely vulnerable to natural disasters 

and the impacts of climatic change (Gheuens et al. 

2019). They are faced with issues such as limited 

water resources (Falkland, 1999), droughts (e.g., 

in Jamaica - Campbell et al., 2011) and floods 

(e.g., in Trinidad - Ramlal and Baban, 2008), 

hence it is critical to have a comprehensive 

understanding of the spatial and temporal 

variability of rainfall in SIDS. Gamble and Curtis 

(2008) have highlighted the importance of utilising 

satellite data for providing an improved 

understanding of rainfall regimes across the 

Caribbean. Furthermore, few SIDS have extensive 

temporal and spatial hydrometeorological records 

(Staub et al., 2014). As such, an assessment of SPE 

products in SIDS will offer an alternative to using 

rain gauge records, and potentially offer a more 

complete picture of the spatio-temporal variability 

of rainfall across islands. Having this knowledge 

will ultimately allow these islands to better manage 

and mitigate water-related issues.  

This paper focuses on the Caribbean island of 

Trinidad; part of the twin-island Republic of 

Trinidad and Tobago – a Small Island Developing 

State. In Trinidad, there has been only one 

published study on the assessment of satellite 

rainfall data with rain gauge measurements 

(Tambie et al., 2012). In that study, TRMM 3B42 

data were compared to rain gauge measurements at 

two stations found within a single satellite grid. The 

major findings of that study highlighted that the 

relationship between TRMM 3B42 and rain gauge 

data varied across temporal scales, with weaker 

correlations on daily and annual scales, and stronger 

correlations during the dry seasons. The authors of 

that paper also found that TRMM 3B42 

underestimated rainfall measurements made by rain 

gauges at all temporal scales investigated. When 

that study was undertaken, rain gauge data for other 

parts of the island were not readily available to the 

researchers, hence an assessment on the spatial 

variability of rainfall was limited. At present, with 

the availability of rainfall data from more rain 

gauges, the utility of SPE products for Trinidad can 

now be assessed, taking into consideration the 

spatial and temporal variability of rainfall over 

different parts of the island.  

For this study, two daily SPE products (areal 

estimates of rainfall), the GPM IMERG V06 and 

PERSIANN-CDR were chosen for assessment with 

rain gauge data (point-based rainfall measurements) 

to determine their potential for use in hydrological 

and climatological research in Trinidad. The 

products were selected because they are easily 

accessible (in the public domain) on the Internet and 

have a relatively long time series. This latest version 

of IMERG has been available since March 2019 

with records dating back to June 2000. PERSIANN-

CDR was released in 2014 and covers a longer 

temporal range, with data from 1983. The finer 

resolution GPM IMERG has the potential for use in 

hydrological applications (e.g., Zubieta et al., 

2017), while the coarser resolution PERSIANN-

CDR can be utilised for long-term climate-based 

research (e.g., Arvor et al., 2017).  



Tambie and Ramlal 2024 – Comparison of satellite precipitation estimates, Trinidad 

 17 

 
Figure 1: Study site showing locations of rain gauges and satellite data footprints. 

 

The purpose of this research is to provide a 

quantitative assessment of two SPE products, 

GPM IMERG and PERSIANN-CDR. The 

performance of these products is assessed in 

relation to rain gauge data from ten stations 

over a ten-year period from 2006-2015, using 

statistical metrics. The main objectives are (1) 

to determine the level of agreement between 

SPE and rain gauge data at various temporal 

aggregations (daily, monthly, seasonal and 

annual) by utilising continuous statistical 

metrics, (2) to determine the precipitation 

detection capabilities of each SPE product by 

utilising categorical statistical metrics, and (3) 

to examine how the performance of each SPE 

product varies spatially at specific sites across 

the island. This study seeks to provide a better 

understanding of the spatial and temporal 

variability of rainfall over the tropical island of 

Trinidad, as well as generating information on 

the potential of utilising remotely sensed 

rainfall estimates for hydrological and 

climatological research in small island 

territories, where reliable ground-based 

measurements may be sparse. The outcomes of 

this research can also provide useful information 

that could assist other researchers in the 

development of future versions of both SPE 

product algorithms.  

 

2. STUDY SITE  

 

Trinidad is the larger of two islands which comprise 

the Republic of Trinidad and Tobago. It is the 

southernmost island of the Caribbean and covers an 

area of 4,768 km2. The terrain of Trinidad consists 

of mountainous regions to the north, central and 

southern parts of the island, with plains and 

undulating land found in the remaining areas. The 

island experiences a dry season from January to 

May characterised as a tropical maritime climate, 

and a wet season from June to December that 

represents a modified moist equatorial climate 

(Trinidad and Tobago Meteorological Service, 

2019). In the wet season, a short (2–3 weeks) dry 

spell known as the ‘Petit Careme’ occurs around 

mid-September to mid-October (Anderson et al., 

2012). The dominant winds are the Northeast 

Trades which bring moisture from over the Atlantic 

Ocean. 
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Table 1. Characteristics at rain gauge stations 

ID Name Lon Lat Elevation 

(m) 

Mean 

Annual 

Rainfall 

(mm) 

Mean Dry 

Season 

Rainfall 

(mm) 

Mean Wet 

Season 

Rainfall 

(mm) 

Missing 

Data (%) 

1 River Estate -61.56 10.73 42 1584.79 270.84 1313.95 0.03 

2 La Regalada Estate -61.46 10.69 71 1520.86 273.20 1247.66 0 

3 Brasso Paria -61.26 10.75 156 2460.71 634.98 1825.73 0 

4 Melajo Plantation -61.1 10.64 58 2957.79 736.12 2221.67 0 

5 Gordon Miller Estate -61.07 10.6 21 2360.41 560.99 1799.42 0 

6 La Mariquita -61.08 10.55 43 2595.08 660.27 1934.81 0 

7 Grosvenor Estate -61.11 10.52 65 2716.41 719.68 1996.73 0 

8 Pure Tabaquite -61.3 10.34 70 2130.29 508.47 1621.82 0.03 

9 Columbia Estate -61.89 10.09 11 1569.41 451.67 1117.74 0.05 

10 Constance Estate -61.93 10.06 8 1237.60 363.90 873.70 0 

 
3. DATA  

3.1. Rain Gauge Data  

Daily rainfall data from pot (Casella) rain gauges 

were obtained from the Water Resources Agency 

[WRA], Trinidad and Tobago. Initially, to ensure 

continuity of records, gauges having more than two 

consecutive days of missing data were excluded 

(e.g., Liu et al., 2011). A total of 10 pot gauges 

were eventually selected for use (Figure 1) over 

the ten-year period from 2006–2015.  

Further quality control was performed on the 

data from the 10 rain gauges through examination 

for outliers and any possible erroneous values. This 

was done through spatial and temporal checks (e.g., 

Dinku et al., 2018) to ensure the reliability of the 

data. It must be noted, however that the data may 

still contain errors even though quality control 

checks have been conducted. Table 1 provides 

some characteristics of the rain gauge stations used 

in this study. 

3.2. Satellite Data  

Two SPE products are assessed in this paper. The 

GPM IMERG V06 and PERSIANN-CDR are 

described below. The spatial extent of gridded data 

from both SPE products over Trinidad are shown in 

Figure 1.  

 

GPM IMERG V06. The Global Precipitation 

Measurement [GPM] mission is a network of 

satellites that provide global observations of 

precipitation (NASA, 2019). Its core 

observatory was launched on February 27 th 

2014, and it builds upon the work of the 

Tropical Rainfall Measuring Mission [TRMM]. 

Further details of the GPM mission can be found 

in Hou et al. (2014). In this study, the 

Integrated Multi-satellite Retrievals for GPM 

(IMERG) V06 (Huffman et al., 2019) product 

was assessed. It was downloaded in netCDF4 

format through the Goddard Earth Sciences Data 

and Information Services Center [GES DISC] at 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGD

F_06/summary. This product is found at a spatial 

resolution of 10 km × 10 km (0.1° × 0.1°) and at a 

daily temporal resolution.  

 

PERSIANN-CDR (Version 1, Revision 1). 

Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks 

[PERSIANN] was developed by researchers 

from the University of Arizona in 1997 (Nguyen 

et al., 2019). In this study, PERSIANN-CDR 

(Version 1, Revision 1) was assessed. This daily 

product is found at a spatial resolution of 

0.25° × 0.25° (NCAR, 2019). Further details can 

be obtained from (Hsu et al., 1997). Data are 

provided in netCDF format and can be 

downloaded directly from a public server: 

https://www.ncei.noaa.gov/data/precipitation

-persiann/access/ at the National Centers for 

Environmental Information [NCEI], National 

Oceanic and Atmospheric Administration [NOAA].  

 

4. METHOD  

 

A point to pixel evaluation method (e.g., Dembélé 

and Zwart, 2016) was undertaken in which data 

from each rain gauge were compared to the data 

values of the corresponding grid cell of the GPM 

IMERG V06 (IMERG, hereafter) or PERSIANN-

CDR precipitation product. The authors chose not to 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/summary
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
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interpolate the point-based observations since only 

ten gauges are being used and they are sparsely 

distributed across the study site. It must be noted 

that some systematic differences are expected 

between observations at point-based locations, and 

pixel-based estimates (Toté et al., 2015). 

Comparisons between gauge and satellite data were 

undertaken at daily, monthly, seasonal, and annual 

temporal scales over the period 2006–2015. Daily 

data from each precipitation source were 

aggregated to provide monthly, seasonal, and 

annual totals.  

Continuous and categorical statistical metrics 

were employed to assess the performance of the 

SPE products. Further details on these metrics can 

be derived from previous literature (e.g., Tan and 

Santo, 2018; Xu et al., 2019). A threshold of 

1 mm/day was selected for distinguishing between 

days with no rain (< 1 mm/day) and rainy days 

(≥ 1 mm/day) (e.g., Xu et al., 2019).  

The capability of SPE products to detect 

varying rainfall intensity events was also assessed. 

Rainfall intensities were categorised based on the 

World Meteorological Organisation and 

adaptations from other studies (Xu et al., 2019) 

(Table 2). 

 
Table 2. Precipitation classes 

Precipitation Classes Range (mm/day) 

Trace 0 – 0.1  

Tiny 0.1 – 1  

Light 1 – 2  

Low moderate 2 – 5  

High moderate 5 – 10  

Low heavy 10 – 20  

High heavy 20 – 50  

Violent >50 

 

5. RESULTS 

5.1. Daily and Monthly Scale 

The relationships between rain gauge data and 

satellite estimates at daily and monthly aggregations 

over the ten-year period are illustrated in Figure 2. 

All correlations are positive, except between rain 

gauge data and IMERG estimates at the daily 

temporal scale (Figure 2a), where a weak negative 

correlation exists (r = -0.01). Overall, the correlations 

between rain gauge data and PERSIANN-CDR are 

stronger (having significant relationships: p < 0.05) 

than those between rain gauge data and IMERG 

(having no significant relationships: p > 0.05) at both 

daily and monthly aggregations. Both SPE products 

generally underestimate daily and monthly rainfall 

totals (overall negative relative biases). Furthermore, 

larger root mean square error [RMSE] values occur 

between rain gauge and IMERG estimates than 

between rain gauge and PERSIANN-CDR estimates at 

both daily and monthly temporal scales.  

Spatial variations in continuous statistics (only 

daily continuous statistics are visualised for reference 

in this paper) revealed that positive relative biases 

occurred at two locations (Columbia Estate and 

Constance Estate) in the southwestern peninsula of the 

island, where the PERSIANN-CDR overestimated rain 

gauge measurements (Figure 3b, 3e and 3h). This 

was also found at the monthly temporal scale (not 

shown). In Figure 3, the x-axes representing longitude 

are reversed for presentation purposes and to depict the 

actual spatial variation across the island. The relative 

bias [RB] generally becomes more negative (Figure 

3h), while the RMSE error tends to increase (Figure 

3i) towards the eastern region of the island, for both 

SPE products. 

The mean monthly rainfall totals over the ten-year 

period were also calculated for each rain gauge and its 

corresponding satellite product. PERSIANN-CDR 

appears to follow the general trend of mean monthly 

rainfall measurements from rain gauges better than 

IMERG (Figure 4). Rain gauges show a clear 

delineation of the dry (January to May) and wet season 

(June to December) in Trinidad, as well as the short 

dry spell (‘Petit Careme’) which typically occurs in 

September/October. PERSIANN-CDR clearly shows a 

decline in mean monthly rainfall values during the 

‘Petit Careme’, while IMERG, on the other hand 

shows a ’spike’ in mean monthly rainfall totals during 

this time. Furthermore, IMERG has higher mean 

monthly rainfall estimates during the dry season 

months in contrast to PERSIANN-CDR (Figure 4). 

Student t tests were calculated between the average 

monthly data from all rain gauges and each SPE 

product. Findings suggest that significant differences 

exist between average monthly rain gauge data and 

IMERG (t = 2.62, df = 22, p > 0.95), while no 

significant differences are found between average 

monthly rain gauge data and PERSIANN-CDR (t = 

1.70, df = 22, p < 0.95). This suggests that 

PERSIANN-CDR is a better estimator of mean 

monthly rainfall and may be more suitable for 

delineating seasons in Trinidad. 

5.2. Seasonal and Annual Scale  

For each year, total rainfall in the dry season 

(January to May), and the total rainfall in the wet 

season (June to December) were calculated for rain 

gauges and SPE products, before calculating 

seasonal continuous statistical metrics. Generally, 

correlations between rain gauge totals and SPE 

estimates were weak and not significant (p > 0.05), 

except for the strong positive relationship (r = 0.59) 
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Figure 2. Scatterplots showing the relationships between rain gauge data and satellite estimates at daily: (a and 

b), and monthly (c and d) aggregations, over the period 2006–2015 

 
Figure 3. Spatial variations in daily continuous statistics 
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Figure 4. Mean monthly rainfall from 2006–2015 for rain gauges and SPE Products  

 
Figure 5. Scatterplots showing the relationships between rain gauge data and satellite estimates at dry season: (a 

and b), and wet season: (c and d) aggregations, over the period 2006–2015.  



Tambie and Ramlal 2024 – Comparison of satellite precipitation estimates, Trinidad 

 22 

 
Figure 6. Scatterplots showing relationships between annual rainfall totals from all rain gauges and (a) IMERG, 

and (b) PERSIANN-CDR, over the period 2006–2015. 

 

observed between dry season rain gauge totals and 

PERSIANN-CDR estimates (which was 

statistically significant: p < 0.05) (Figure 5b).  

Dry season rainfall totals are underestimated 

more by PERSIANN-CDR (RB = -36.84%) than 

by IMERG (-3.62%). On the other hand, IMERG 

(RB = -45.05%) underestimates wet season rainfall 

totals more than PERSIANN-CDR (RB = -

23.38%). RMSE values are larger for IMERG 

estimates than PERSIANN-CDR estimates for both 

dry and wet season rainfall totals.  

Upon examination of RB values at individual 

stations, it was found that both SPE products 

overestimated dry season rainfall totals (positive 

RB values) at River Estate (RB (IMERG) = 

106.34%; (RB (PERSIANN-CDR = 10.77%) and 

La Regalada Estate (RB (IMERG) = 92.85%; RB 

(PERSIANN-CDR) = 21.85%). IMERG also 

overestimated dry season rainfall totals at the 

Constance Estate, with an RB value of 10.48%. 

These overestimations all occurred in the western 

section (-61.4° W to -62.0° W) of the island, with 

larger overestimations made by IMERG. For wet 

season rainfall totals, positive relative biases were 

calculated for PERSIANN-CDR at two locations 

(Columbia Estate and Constance Estate) on the 

western side of the island which indicate 

overestimation of rainfall. No overestimations were 

made by IMERG for wet season rainfall totals at 

individual station locations.  

Generally, both PERSIANN-CDR and IMERG 

appear to underestimate dry and wet season rainfall 

totals more towards the north and east of the island. 

These regions of the island also have larger RMSE 

values for both SPE products. 

The correlations between annual rainfall totals of 

rain gauges and satellites are generally weak and 

positive (Figure 6) with no significant relationship 

between rain gauge data and IMERG estimates (p > 

0.05) and a significant relationship (p < 0.05) 

between rain gauge data and PERSIANN-CDR. 

However, at station locations in the Northern Range 

(River Estate, La Regalada, and Brasso Paria), 

negative correlations exist between annual rainfall 

totals of IMERG and rain gauges. Both SPE 

products generally underestimate annual rainfall 

measurements made by rain gauges (negative RB 

values) (Figure 6), except at two locations in the 

southwestern peninsula of the island (Columbia 

Estate and Constance Estate) where PERSIANN-

CDR overestimated annual rainfall totals. When 

considering spatial variability across the island, 

correlations for IMERG tend to be lower towards 

the north. For both SPE products, RB values 

generally decline towards the north and east, while 

RMSE values increase in these directions.  

The mean seasonal and annual rainfall totals 

were also calculated for rain gauges and each SPE 

over the period 2006–2015 (Figure 7). In the dry 

seasons, the mean rainfall totals for IMERG always 

exceed those being estimated by PERSIANN-CDR 

at all station locations (Figure 7a). On the other 

hand, PERSIANN-CDR estimates always exceed 

IMERG estimates at all station locations in the wet 

seasons (Figure 7b).  

The highest mean annual rainfall measured by 

rain gauges are found at locations in the 

northeastern region of the island. Lower mean 

annual rainfall measured by rain gauges are found at 

locations towards the northwest and southwest. At 
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Figure 7. Mean (a) Dry Season, (b) Wet Season, and (c) Annual, rainfall 

totals from 2006–2015.  

 
80% of the station sites, both SPE products 

underestimate the mean annual rainfall. Both SPE 

products appear to provide better mean annual 

rainfall estimates at stations measuring mean 

annual rainfall totals less than 2000 mm (Figure 

7c). 

5.3. Precipitation Detection  

Categorical statistics were calculated to determine 

the precipitation detection capabilities of the two 

SPE products. These were determined for all days, 

all dry season days and all wet season days from 

2006–2015. Overall categorical statistics calculated 

for all rain gauges over the time period are shown 

in Figure 8.  

PERSIANN-CDR has a higher POD 

(Probability Of Detection) than IMERG, for the 

entire period, and for both seasons (Figure 8a). 

The larger difference in POD between the two SPE 

products occurs in the wet season, where the POD 

by PERSIANN-CDR is more than twice the POD 

by IMERG. During the dry seasons, both satellite 

precipitation products have POD values less than 

0.5. Over the entire period and during both seasons, 

the FAR (False Alarm Rate) is higher for IMERG 

than PERSIANN-CDR. Lower FARs were 

calculated for both SPE products in the wet seasons. 

PERSIANN-CDR has the higher CSI (Critical 

Success Index) over the entire period and for both 

seasons. Both SPE products have higher CSIs 

during the wet seasons than in the dry seasons. 

When considering the spatial variability of 

categorical statistics at each station location, it was 

found that over the entire period, generally lower 

FARs occur at locations towards the east of the 

island. 
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Figure 8. Overall Categorical Statistics. 

 

Detection of various precipitation intensity 

classes  

Overall, trace precipitation (0–0.1 mm/day) 

constitutes the largest percentages of rainfall 

intensities measured by rain gauges and estimated 

by SPE products (Figure 9). Tiny precipitation 

(0.1–1 mm/day) intensities are detected most 

frequently by IMERG for the entire period and for 

both seasons. For the entire period, rain gauges 

capture higher intensity precipitation, such as high 

heavy (20–50 mm/day) and violent (>50 mm/day) 

most frequently in comparison to IMERG and 

PERSIANN-CDR (Figure 9a).  

In the dry seasons, PERSIANN-CDR detects 

the highest frequency (73.43%) of trace 

precipitation (Figure 9b), while IMERG detects 

trace precipitation most frequently (51.35%) in the 

wet seasons (Figure 9c). Rain gauges appear to 

capture the low moderate (2–5 mm/day), high 

moderate (5–10 mm/day) and low heavy (10–20 

mm/day) events with the highest frequencies in the 

dry seasons, while in wet seasons, PERSIANN-

CDR appears to capture these events with the 

highest frequencies.  

 

6. DISCUSSION  

6.1. Temporal Variability  

The overall correlation coefficients between 

IMERG and rain gauge measurements are weak (-

0.5 ≤ r ≤0.5) at all temporal scales assessed. Daily 

correlations, in particular may be affected due to the 

calibration of the IMERG product with monthly 

gauge data, which may result in an inadequate 

representation of daily rainfall (Tan and Santo, 

2018). Furthermore, weak daily correlations may 

also be attributed to the poor representation of 

coastal regions by the GPROF2014 that is utilised 

in IMERG products (Tan and Duan, 2017). In one 

study, Caracciolo et al. (2018) found lower 

correlations in coastal pixels as compared to inland 

pixels when assessing hourly IMERG and rain 

gauge data over two Mediterranean islands. Since 

most of the rain gauges used for the assessment in 

Trinidad are found within 1-2 IMERG pixels from 

the coast, correlations between ground-based data 

and IMERG estimates may have been affected. The 

performance of IMERG at the daily temporal scale 

shows varying relationships with rain gauge 

measurements in different regions of the world, for 

example, weaker correlation coefficients were 

found in the Southern Tibetan Plateau (0.46) (Xu et 

al., 2017), and Myanmar (0.224–0.316) (Yuan et 

al., 2017), while stronger correlations were found in 

the Huang-Huai-Hai Plain, China (0.76) (Xu et al., 

2019), and in the Mishui basin, China (0.85) (Jiang 

et al., 2018).  

PERSIANN-CDR exhibited overall positive 

correlations with rain gauge measurements at all 

temporal scales assessed. Stronger relationships (r 

>0.5) were found at the monthly scale and the dry 

season scale. In Trinidad, PERSIANN-CDR also 

provides a better estimation of mean monthly 
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Figure 9. Frequency of daily rainfall intensities for (a) entire period (b) dry 

seasons and (c) wet seasons, from 2006–2015. 

 

rainfall in comparison to IMERG. A study 

conducted by Alijanian et al. (2017) over Iran, 

also showed that PERSIANN-CDR had higher 

correlations at the monthly scale (r = 0.74) as 

compared to the daily scale (r = 0.33), as well as 

closely following the observed pattern of monthly 

rainfall. As such, potential exists for PERSIANN-

CDR to be utilised for climate-based studies in 

Trinidad, such as drought monitoring.  

A visual inspection of average monthly rainfall 

data revealed that IMERG generally overestimates 

rainfall during the dry season months and 

underestimates rainfall during the wet season 

months. An exception, however, was noted during 

the Petit Careme (the short dry spell which occurs 

during the wet season), when average monthly 

IMERG data overestimated ground-based rainfall. 

Research conducted in West Africa by Maranan et 

al. (2020) found that IMERG underestimates 

rainfall in the wet seasons and overestimates 

monthly rainfall during a short dry season (July–

August), with overestimation being attributed to 

IMERG having issues with capturing weak 

convective rainfall (WCR). It appears that IMERG 

is sensitive to dry periods, which may be 

experiencing high evaporation rates.  

At each temporal scale assessed, both IMERG 

and PERSIANN-CDR underestimate rainfall 

(overall negative relative biases). The largest 

difference in RB between IMERG and PERSIANN-

CDR occurred at the dry season scale (difference in 

RB = 33.22%), where IMERG had a less negative 
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RB (-3.62%) than PERSIANN-CDR (-36.84%). 

This indicates that IMERG may be providing closer 

estimates of total dry season rainfall by 

underestimating less rainfall than PERSIANN-

CDR. IMERG also generally overestimates mean 

monthly rainfall in the dry season, and this may 

have contributed to the overall low underestimation 

at the dry season scale.  

6.2. Spatial Variability  

In assessing spatial variability of continuous 

statistical metrics across the island, it was found 

that at most temporal scales (daily, monthly, wet 

season and annual) there were generally declines in 

RB (higher underestimation of rainfall) and 

increases in RMSE for both SPE products towards 

the northeast of the island. The northeast of 

Trinidad is the wettest region of the island and 

experiences mean annual rainfall totals over 

2000 mm (Table 1). On the other hand, the western 

parts of the island (~61.4° W to 62° W) experience 

mean annual rainfall totals less than 1600 mm. 

Furthermore, all overestimations recorded at 

individual station locations for both SPE products 

were experienced in the northwestern and 

southwestern regions of the island. The spatial 

variations in overestimations by both SPE products, 

indicate that in drier regions (regions experiencing 

a lower mean annual rainfall) there is a greater 

chance that ground-based records are 

overestimated.  

Mashingia, et al. (2014) suggest that 

overestimation of rainfall by SPE products under 

dry conditions may be due to the bases of 

convective clouds being generally higher than those 

of convective clouds which develop over moist 

conditions. As such, when rain falls from higher in 

the atmosphere, it has a greater chance of being 

evaporated before reaching the ground. The rain 

gauges would therefore measure a lower rainfall 

than what is being estimated by the satellite from 

the clouds. Those authors also found that in more 

humid regions, satellite products generally 

underestimated precipitation since rain gauges were 

able to better capture the local precipitation.  

In other research, Ayugi et al. (2019) found that 

PERSIANN-CDR overestimates rainfall where 

there are large bodies of water and a humid climate. 

Those authors suggest that this may be attributed to 

the absorption of radiation over the coastal waters 

which may produce non-raining clouds that can be 

falsely detected as rainfall. In the south-western 

peninsula of Trinidad, the majority of the 

PERSIANN-CDR satellite grid cell covers water 

from the Gulf of Paria and the Columbus Channel. 

As such, this may have also attributed to the 

overestimation of rainfall by PERSIANN-CDR at 

stations located in this region of the island. This 

may also be true in the northwestern region, 

particularly over the River Estate station.  

 
Table 3. Summary of relationships between SPE 

product data and rain gauge data  

Relationships between SPE product data and rain 

gauge data 
Temporal 

Aggregation 
GPM IMERG PERSIANN-

CDR 
Daily Weak Negative Weak Positive* 
Monthly Weak Positive Strong Positive* 
Dry Season Weak Negative Strong Positive* 
Wet Season Weak Positive Weak Positive 
Annual Weak Positive Weak Positive* 

Note: weak correlation: -0.5 ≤ r ≤ 0.5, strong correlation: 

-0.5 > r > 0.5, *statistically significant. 

6.3. Precipitation Detection Capabilities  

PERSIANN-CDR has a higher POD and CSI than 

IMERG across all days, and in both seasons. 

Overall, IMERG has a higher FAR which could be 

due to the rainfall threshold utilised to distinguish 

between rain/no rain days in this study. When 

considering all days within the study period, 

IMERG detected the highest frequencies of both 

trace and tiny precipitation, which both fall below 

the rainfall threshold. In regions experiencing more 

rainfall, both SPE products appear to generally have 

lower FARs, particularly PERSIANN-CDR. Lower 

FARs may be attributed to more rainfall events 

occurring within an SPE product grid at any given 

time, therefore having a higher probability of being 

detected by the satellite.  

Over the entire period (2006–2015), IMERG 

was capable of capturing the largest frequencies of 

smaller intensity rainfall events (trace and tiny 

precipitation). IMERG appears to be less capable of 

estimating moderate and heavy intensity events, 

particularly in the wet seasons. This may explain 

why IMERG has an overall larger underestimation 

of rainfall in the wet seasons. In contrast, 

PERSIANN-CDR appears to capture larger 

frequencies of moderate and heavy intensity 

precipitation events in the wet season as compared 

to IMERG. Furthermore, it is clear that both SPE 

products fail to capture some of the largest intensity 

precipitation classes (high heavy and violent), 

particularly in the wet season. These may be more 

localised events which appear to be captured better 

by point-based rain gauges.  

Table 3 provides a summary of the relationships 

between SPE products and rain gauge data at 

different temporal aggregations. The precipitation 
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detection capabilities of both SPE products may 

have implications on potential applications. For 

example, PERSIANN-CDR may be more 

applicable for use in daily-scale hydrological 

modelling of river catchments in Trinidad, because 

of its ability to capture a larger frequency of 

moderate and heavy intensity rainfall events, which 

may contribute to larger surface runoff, than if 

IMERG were to be utilised. 

 

7. CONCLUSIONS  

 

The findings of this research have highlighted some 

differences in how two SPE products estimate 

rainfall over Trinidad and Table 3 summarizes the 

relationships between SPE products and rain gauge 

data at different temporal aggregations. IMERG 

generally has weak correlations with rain gauge 

data at all temporal scales assessed, while 

PERSIANN-CDR has strong correlations at the 

monthly scale and dry season scale.  

PERSIANN-CDR provides a better 

representation of mean monthly rainfall totals and 

can therefore be considered for use in long-term 

assessments of monthly rainfall over the island. For

mean seasonal rainfall totals, IMERG 

underestimates less in the dry seasons, and more in 

the wet seasons. Both SPE products also show 

spatial variability, with larger underestimations 

occurring in the wetter northeast region of the 

island.  

With regard to rainfall detection, PERSIANN-

CDR generally has a higher probability of detection 

than IMERG. Both SPE products appear to also 

have limitations in capturing the largest intensity 

precipitation events. Further calibration of both SPE 

products may be required before they can be utilised 

as a proxy for rain gauge measurements in Trinidad. 

Future research can be conducted on an assessment 

of sub-daily satellite rainfall data, particularly 

IMERG, however sub-daily data must first become 

available for the rain gauges on the island. 
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