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ABSTRACT. The Nariva Swamp, the largest freshwater wetland in Trinidad and Tobago, is currently facing 

increasing pressure from physical development. This study detects and maps changes in the land use and land 

cover (LULC) of the Nariva Swamp by employing GPS-ground data, high-resolution satellite imagery and 

advanced image processing techniques in Google Earth Engine (GEE). An accurate, updated LULC map of the 

Nariva Swamp was developed using machine learning, high-resolution Planet SuperDove (PSB.SD) 3 m per pixel 

satellite imagery, and field data. The performance of random forest (RF), support vector machine (SVM) and 

classification and regression trees (CART) machine learning (ML) algorithms was assessed. The results 

indicated that the overall accuracy of the RF, SVM and CART classifiers were 90%, 85% and 85% respectively. 

While all three algorithms produced high accuracy outputs, the RF classifier outperformed both the CART and 

SVM classifiers. The RF classifier was most suited to the development of LULC maps for the Nariva Swamp. 

The 2024 LULC map was compared to a 2009 LULC map of the Nariva Swamp. The key changes noted were 

among the water, urban and mangrove classes. The random forest algorithm applied is regarded as the best for 

future studies in the Nariva Swamp region. 
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1. INTRODUCTION 

 

Coastal wetlands contain ecosystems with high 

biodiversity and typically help to advance 

productivity between the sea and the land (Nie et 

al., 2023). These highly diverse areas cover more 

than 12,200 million hectares of the Earth’s surface 

(Millán et al., 2021) and provide several 

invaluable ecosystem services. These include 

coastal protection, flood control and water 

purification in addition to having the capacity to act 

as wind breaks during storm surges and hurricanes 

(Murdiyarso et al., 2015; Newton et al., 2020). 

Despite their importance, coastal wetland 

ecosystems continue to face a range of problems on 

a global scale. Habitat loss due to deforestation and 

urbanization is a significant concern as these areas 

have diminished in size in recent decades (Choi et 

al., 2022). Increased pressures from agriculture, 

urban expansion, climate change and alterations to 

hydrological cycles continue to exacerbate the 

problem and cause further loss of biodiversity 

(Martínez-Megías & Rico, 2022). South 

American and Caribbean countries rank third in 

wetland coverage, accounting for 15.8% of the total 

global coastal wetlands (Millán et al., 2021). In the 

Caribbean region in particular, coastal wetlands 

encounter similar challenges which threaten the 

sustainability of these landscapes such as mangrove 

deforestation for development, pollution from 

agricultural runoff and increased vulnerability to 

hurricanes and sea level rise. 

Coastal wetlands in Caribbean islands are 

usually constrained by development on one side and 

the ocean on the other (Lagomasino et al., 2019). 

While these ecosystems provide much needed 

protection to inland development, they are 

constantly under threat of degradation and 

deforestation to accommodate urban expansion. 

Climate change impacts, such as sea-level rise and 

more frequent and intense hurricanes, also pose a 

significant threat to these ecosystems (Soanes et al., 

2021). Estimates suggest that a one-meter elevation 

in sea level could put into risk over 72% of the 

World’s coastal wetlands (Millán et al., 2021), 

including many in the Caribbean region. The 

region’s heightened vulnerability to climate change 

related events puts these ecosystems at an even 

higher risk, potentially leading to further 

degradation and loss (Lagomasino et al., 2019). 

Caribbean nations rely heavily on these ecosystems 

for coastal protection and their destruction can 

result in increased erosion and damage to the 

shoreline and the coastal communities 

(Lagomasino et al., 2019). This is already 

occurring in regions along the eastern coastline of 

mailto:deanesh.ramsewak@utt.edu.tt


Ramsewak et al. 2025 – Mapping in the Nariva Swamp, Trinidad 

 44 

Trinidad in the vicinity of the Nariva Swamp.  

The Nariva Swamp is the largest freshwater 

wetland in Trinidad and Tobago, providing various 

benefits to the surrounding areas, local 

communities and the adjacent Manzanilla beach, 

which is protected due to its proximity to the 

swamp’s mangrove forests (Mahabir & Nurse, 

2007). Urbanization, improper land use practices 

and climate change, have caused significant 

destruction and degradation along the Manzanilla 

coastline in recent years. Over the past few years 

several incidents of extensive damage to roads, 

houses and farms in the area have occurred. 

Unprecedented weather events in 2015 wreaked 

havoc on substantial portions of the primary road 

and resulted in the devastating flooding and 

destruction of numerous houses (Jalim, 2015). In 

2018 and 2022 weather events of a similar scale 

inflicted further destruction along the Manzanilla 

coastline, including the main road, residential 

properties, and the decimation of livestock and 

crops belonging to numerous local farmers (Paul & 

Sambran, 2022). Much of this has been attributed 

to climate change and increases in greenhouse 

gases such as carbon dioxide (Mahabir & Nurse, 

2007). As a result, the wetland ecosystem faces a 

significant risk to its sustainability from these 

extreme climatic occurrences (Darsan et al., 

2013).  

The geographical positioning of the wetland 

renders it susceptible to storms originating from the 

Atlantic, and the dangers are heightened by its 

minimal elevation (Darsan et al., 2013). Studies 

have shown that coastal erosion and storm surges 

possess the capacity to breach the protective beach 

barriers such as at Manzanilla, while the 

vulnerability to tsunamis further increases the 

potential impacts (Darsan et al., 2013). Preserving 

the integrity of the Nariva Swamp has become 

increasingly important, and requires immediate and 

meticulous management measures (Darsan et al., 

2013). Presently, there is a deficiency in up-to-date, 

comprehensive, LULC information for the area as 

can be seen in the Management Plan for the Nariva 

Swamp Protected Area 2019-2029 (FAO, 2019). 

An essential component of remedying this involves 

ensuring that current updated LULC maps of the 

swamp are created to accurately identify the most 

extensively impacted regions and prioritize them 

for urgent intervention. The development of an 

updated LULC map for the swamp promises to 

yield a more extensive understanding of the 

changes in land use and land cover patterns 

occurring within the boundaries of the swamp and 

facilitate enhanced efficacy in management efforts 

for the area.  

Land cover mapping has been used for decades 

to detect change in a variety of environments (Zhu 

et al., 2022). However, the need for such maps is 

becoming increasingly vital in policy development 

and sustainable management (Saah et al., 2019). 

Using a combination of remote sensing and field 

verification techniques, highly accurate LULC maps 

can be developed which can be reproduced on a 

regular basis (Manandhar et al., 2009). Over the 

years, a variety of classification methods and 

algorithms have been used to develop LULC maps. 

These techniques usually utilize machine learning 

(ML) algorithms that are selected based on the 

availability of data and the characteristics of the 

environment to be classified (Vizzari, 2022). With 

advancements in different remote sensing tools, 

LULC maps continue to be developed with 

increasing accuracy (Mashala et al., 2023). More 

recent studies have also explored the potential of 

using deep learning techniques for land use and land 

cover classification with varying levels of success 

(Olaf et al., 2015; Mahdianpari et al., 2018; Vali 

et al., 2020; Cecili et al., 2023). This approach, 

however, requires large amounts of labelled data for 

the development of a reliable, robust model and can 

require significant resources to execute (Digra et 

al., 2022). As a result, LULC mapping is still 

heavily reliant on the use of ML algorithms. Among 

the different algorithms used are several which have 

consistently produced reliable results and are 

considered the conventional standards (Patil & 

Panhalkar, 2023). These include random forest 

(RF), artificial neural network (ANN), fuzzy 

ARTMAP (FA), support vector machine (SVM) and 

classification and regression tree (CART) classifiers 

(Talukdar et al., 2020; Vizzari, 2022). In this 

study, RF, SVM and CART were selected to carry 

out the classification as previous studies have 

demonstrated that they were best suited to wetland 

ecosystems (Vizzari, 2022). The performance of a 

model can be evaluated in a number of ways, 

however, for this study, this was done using a 

confusion matrix accuracy assessment to determine 

the kappa coefficients, overall accuracy and 

producer’s and user’s accuracies serving as key 

performance metrics (Zhao et al., 2024). While all 

three classifiers selected can produce reliable LULC 

maps (Zhao et al., 2024), several factors can 

influence their accuracy including the LULC types 

within the study area and the spatial and spectral 

resolutions of the imagery used (Talukdar et al., 

2020).  

Landsat-8 and Sentinel-2 satellite imagery are 

commonly used due to their easy accessibility 

through Google Earth Engine (GEE) (Nandy et al., 

2017; Loukika et al., 2021). PlanetScope satellite 
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Figure 1. Study area location in Nariva Swamp, Trinidad and Tobago 

 

imagery has also been used more frequently in 

recent years (Acharki, 2022; Vizzari, 2022). 

While all three satellites capture images with fairly 

high spectral resolution, they vary regarding their 

respective spatial resolutions. Landsat-8 imagery is 

often considered low spatial resolution with a 30 m 

per pixel resolution for its main bands while 

Sentinel imagery is considered medium spatial 

resolution with a 10 m per pixel resolution for its 

key bands (Loukika et al., 2021). PlanetScope 

imagery provides a higher spatial resolution with 

3–5 m per pixel, and is more widely utilized for 

smaller study areas (Acharki, 2022; Basheer et al., 

2022). Studies have also demonstrated that as 

spatial and spectral resolution increase, 

classification accuracy typically increases 

(Acharki, 2022). For this study, PlanetScope 

SuperDove (PSB.SD) 3 m per pixel satellite 

imagery was utilized since the area of study as well 

as some of the individual classes were small. As a 

result, it was determined that any classification to 

be conducted would greatly benefit from the higher 

spatial resolution of this imagery. 

The main goal of this study was to develop an 

updated LULC map of the Nariva Swamp region 

using a machine learning approach and 

PlanetScope SuperDove (PSB.SD) 3 m per pixel 

satellite imagery. The following objectives were 

implemented in order to achieve this goal, three 

different machine learning (ML) algorithms were 

applied and the output maps generated were 

evaluated to determine which one was best suited 

for developing LULC maps for the Nariva Swamp, 

a final 2024 LULC map of the Nariva Swamp was 

then produced by applying the best performing ML 

algorithm and finally, a land cover change 

assessment was conducted by comparing the 2024 

LULC map produced to a previously developed 

2009 LULC map. 
 

2. MATERIALS AND METHODS 

2.1 Study Area 

The Nariva Swamp (Figure 1), one of several 

wetlands in Trinidad and Tobago, is found along the 

eastern coast of Trinidad at 10°23' N and 061°04' W 

(Darsan et al., 2013; Stewart et al., 2022). It spans 

approximately 113.4 km2 and serves as a catchment 

area for the Nariva River, discharging into the 

southern end of its eastern border at the Cocal, a 

sand bar known as Manzanilla beach, which 

separates it from the Atlantic Ocean (Darsan et al., 

2013; Stewart et al., 2022). Despite Trinidad's 

relatively small size and tropical climate, there are 
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notable variations in the yearly average 

precipitation levels (Dookie et al., 2018). The 

eastern region of Central Trinidad, known as the 

wet belt, receives substantial rainfall of 

approximately 90–120 inches (2286–3048 mm) 

annually. On the other hand, the southern part of 

Trinidad is characterized by a drier climate, with an 

average annual rainfall below 80 inches (2032 mm) 

except for a narrow strip on the east coast and the 

northern flanks of the Southern Range 

(Roopnarine et al., 2022). 

The Nariva Swamp is not only the largest 

wetland but also the largest freshwater swamp 

system in Trinidad and Tobago (Juman & 

Hassanali, 2013). The region showcases a rich 

tapestry of natural elements, encompassing coastal 

beaches, freshwater marshes, palm swamps, 

freshwater swamp woods, and mangroves 

(Baptiste & Smardon, 2012). This intricate blend 

of habitats provides a nurturing environment for a 

wide array of wildlife, boasting an impressive 

diversity of flora and fauna inclusive of 176 species 

of birds, 45 species of mammals, 39 species of 

reptiles, 19 species of frogs, 33 species of fish, 28 

species of spiders, 15 species of snails and conch, 

213 species of insects, and an impressive count of 

over 319 plant species (FAO, 2019). 

The Nariva Swamp is surrounded by several 

local communities, Plum Mitan, situated to the 

North, Biche located to the West, and Kernahan, 

positioned on the South-East (Carbonell & 

Nathai-Gyan, 2005). The swamp has been utilized 

by these communities for small-scale subsistence 

farming, fishing, hunting and housing development 

since the 1930s (FAO, 2019). 

The increasing demand for staple food items 

prompted the implementation of an exclusionary 

zone for rice farming in the 1950s, known as Rice 

Project A or Plum Mitan Rice Scheme (FAO, 

2019). This agricultural endeavor led to the 

clearance of an estimated 5 km2 of wetland and 

forest to construct drainage and irrigation channels, 

dividing the land into agricultural plots (FAO, 

2019). Another developmental project, the Navet 

Dam, constructed in the 1960s to supply growing 

residential areas in the west, reduced the water 

volume reaching the Nariva system (FAO, 2019). 

In the 1980s, large-scale commercial farmers from 

other parts of the country arrived to exploit the wet 

rice paddy prospects in the area (FAO, 2019). They 

cleared and prepared 15 km2 of land south of the 

Plum Mitan Rice Scheme, known as Rice Project 

B, using agrochemicals, heavy machinery, and fires 

(FAO, 2019). In response to their harmful farming 

practices, environmentalists and the media 

campaigned for their removal, resulting in their 

expulsion in 1996 after the 'Battle of Nariva' from 

1993 to 1996 (Carbonell & Nathai-Gyan, 2005; 

FAO, 2019) . 

Apart from these human activities impacting the 

Nariva system, environmental threats include 

saltwater intrusion, coastal erosion, and rising sea 

levels (Darsan et al., 2013; Juman & Ramsewak, 

2013). Although numerous institutions have 

expressed interest in exploring oil reserves in the 

area, they have been unable to obtain permission to 

do so within the protected confines of the swamp 

(Jaggernauth, 2012). As a result, they have drilled 

as close as possible without crossing the boundary 

(Jaggernauth, 2012). 

Over the years, the management of the Nariva 

Swamp has undergone various changes and 

initiatives. It was initially protected by the Forestry 

and Wildlife legislation and was later declared a 

Wetland of Ecological Importance under the 

Ramsar Convention in 1993 (Juman & Hassanali, 

2013). Subsequently, the Government of the 

Republic of Trinidad and Tobago included the 

Nariva Swamp in the Montreaux Record and 

requested a Ramsar Advisory Mission, leading to 

recommendations aimed at enhancing wetland 

management (Juman & Hassanali, 2013). These 

suggestions included conducting an environmental 

impact assessment, implementing a management 

plan, and developing a restorative plan focused on 

hydrology, aquatic vegetation, and firefighting 

(Juman & Hassanali, 2013). In 2006, the swamp 

was designated an Environmentally Sensitive Area 

under the Environmental Management Act, 

fostering collaboration between community-based 

organizations, the University of the West Indies, 

and the Forestry Division (Juman & Hassanali, 

2013). This collaboration resulted in the 

establishment of the Nariva Swamp Restoration, 

Carbon Sequestration, and Livelihoods Project in 

2011 (Juman & Hassanali, 2013). 
 

2.2 Data Sources 

High-resolution PSB.SD 3 m per pixel satellite 

imagery was accessed from the Planet Labs 

database. This imagery was selected as it presents a 

high spatial and spectral resolution compared to 

other publicly available satellite imagery commonly 

used (Table 1) (Kpienbaareh et al., 2021; 

Aldiansyah & Saputra, 2022). Imagery for 

January 24, 2024, was selected to be used for the 

final classified map as this imagery contained the 

lowest cloud cover and required the least 

preprocessing. Additional images for the months of 

January and February of 2023 as well as images 

from January and February of 2024 were also 
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Table 1. Comparison of publicly available satellite 

imagery 

 
 

obtained which were used to assist with training as 

well cloud masking. A combination of the Google 

Earth Engine (GEE) platform and ESRI’s ArcGIS 

Pro software was used to carry out the 

preprocessing of the imagery in order to perform 

cloud masking and extraction of the study area. For 

the classification of the imagery, all 8 bands of the 

PlanetScope data were used. Figure 2 depicts a 

sample of a PSB.SD 3 m per pixel satellite image 

used in this study. 

 

 
Figure 2. Example of a PSB.SD 3 m per pixel satellite 

imagery mosaic used in the study 
 

 

The classification scheme used in this 

study comprised of eight classes as follows: 

coconut; forest; agriculture; mangrove; non-

forested wetland; sandy beach; urban 

development and water and was adapted from 

a previous study (FAO, 2019) as well as 

preliminary in-situ surveys of the study area.  

For the study, 485 field sample points were 

collected across the eight identified land cover 

classes (Table 2) to be used for training and 

accuracy assessment of the ML algorithms. 

GEE was used to train and execute all three 

algorithms used in the study, adapting a 

similar methodology to one used for the 

development of a LULC for Munneru river 

basin in India (Loukika et al., 2021). The 

platform’s built-in functions for the classifiers 

provided the basis for the algorithms used:  

 Support vector machine (SVM) algorithm 

via the “Classifier.libsvm” method which 

operates by creating an optimal hyperplane 

during training to separate classes with 

minimal misclassification (Basheer et al., 

2022). 

 Classification and regression tree (CART) 

algorithm via the “Classifier.smileCart” 

method which operates by recursively 

partioning data based on a chosen threshold 

until reaching terminal nodes. The data is 

divided into groups, generating trees using 

subsets of these groups (Basheer et al., 2022).  

 Random forest (RF) algorithm via the 

“Classifier.smileRandomForest” method 

which operates by mixing multiple CART 

models to construct decision trees by 

randomly selecting training datasets and 

features (Basheer et al., 2022). 
 

2.8 Methodology 

A key aspect of this study involved obtaining 

field data which could be used to train the ML 

algorithms as well as to assess the accuracy of 

the developed LULC maps. Data was collected 

within two sections of the Nariva Swamp as 

well as along the eastern boundaries (Figure 

3). A total of 485 field GPS coordinates were 

collected over a two-day period in February 

2024. The collected coordinates were split 

into training and accuracy assessment datasets 

in a ratio of approximately 70:30 as this ratio 

has been shown to produce a high level of 

accuracy (Odindi et al., 2014; Aldiansyah & 

Saputra, 2022).  
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Table 2. Number of field sample points collected for 

each land cover class in the classification scheme used 

 
 

Following this, the cloud rectified image was 

imported into GEE along with supplementary raster 

data of the Nariva Swamp and the set of 317 

training sample points collected during the ground 

truthing exercise. Additional points were generated 

using information from high resolution Google 

maps imagery (Vizzari, 2022), additionally 

obtained satellite imagery and observational data 

collected during the ground truthing exercise in 

order to ensure a minimum of 50 training points 

were provided for each class in the classification 

scheme (Lillesand et al., 2015). 

Figure 4 illustrates the methodological workflow 

implemented for classifying the imagery using the 

selected ML algorithms and comparison of the outputs 

to determine the most accurate/suitable product. The 

imagery selected as the primary input for the 

classification was first imported into ArcGIS Pro along 

with supporting imagery in order to remove cloud 

shadow and cloud cover (Liedtke & Simon, 2022).

 
Figure 3. Study data collection locations within the Nariva Swamp. 
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Figure 4. Methodology used for the LULC 

classification of PSB.SD 3 m per pixel satellite 

imagery 
 

 
Table 3 Name and description of the LULC classification 

scheme used in the study 

 
 

The classification scheme used in this study was 

based on a scheme created in 2009 (FAO, 2019). The 

original scheme contained a total of 14 classes, 

however based on preliminary studies of the area it 

was determined that several of the classes either no 

longer existed or could be grouped into a single class 

due to their similar function and spectral reflectance. 

It is assumed that the reduction in the number of 

classes also served to further increase the 

accuracy of the final classified map as 

studies have suggested that map accuracy 

may decrease as the number of classes 

increase (Thinh et al., 2019). Using the 

original scheme and additional guidance 

provided by the Anderson Land Cover 

Classification System (Anderson et al., 

1976), the resulting scheme used for this 

study was comprised of eight identified 

classes which are listed in Table 3: 

coconut; forest (which combined the 

forest, forested wetland and mixed forest); 

water; agriculture (which encompasses 

active and fallow crops); mangrove; non-

forested wetland (which combined non-

forested wetland, freshwater marsh 

dieback, grasslands as well as former rice 

areas in succession); urban development 

(which combined urban residential and 

urban transport); and sandy beach. 

For the random forest classifier, a value of 

100 was selected for the number of trees as 

this provided the highest accuracy and 

performance while for the CART classifier, 

the optimum cross-validation factor was set at 

10 based on previous studies (Kohavi, 1995). 

The SVM classifier required several inputs to 

produce accurate results. For the 

classification, it was found that the C-SVC 

type worked best with a linear kernel type and 

a cost (C) value of five. 
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Figure 5. Classified LULC maps of the Nariva Swamp created using PSB.SD 3m per pixel satellite imagery and 

CART, SVM and RF classifiers in GEE for January 24, 2024 

 

The accuracy of each model was determined 

using a confusion matrix which determined the 

overall accuracy for the maps produced using each 

method, as well as their respective producer’s and 

user’s accuracy. A kappa coefficient was also 

calculated for each produced map for comparison. 

These metrics are frequently used throughout 

similar studies (Nandy et al., 2017; Loukika et al., 

2021; Basheer et al., 2022; Vizzari, 2022) as a 

means of comparing the performance of different 

classifiers. The accuracy assessment dataset, which 

consisted of 168 data points, was utilized for the 

error matrix. To perform the accuracy assessment, 

the data sample points selected for accuracy 

assessment were overlain onto each of the 

produced maps within GEE. The overall accuracy 

of each map was calculated using the following 

equation: 
 

Overall Accuracy (OA) = T_c/T_s × 100  (1) 
 

Where T_c represents the total number of correctly 
classified pixels and T_s represents the total number of sample 

pixels. The kappa coefficients were calculated using the 

equation: 
 

kappa coefficient (k) = (OA-CA)/(1-CA) (2) 
 

Where OA is the overall accuracy and CA the chance of 
agreement. The PA was calculated by dividing the total number 

of classified points that agree with the reference data by the total 

number of sample pixels used that class, while the UA was 
calculated by dividing the total number of classified pixels that 

agree with the reference data by the total number of classified 

pixels for that class.  

The map with the highest OA was selected as 

the final output map and then used to carry out a 

change detection analysis against the LULC map 

produced in 2009. Several methods have been used 

for change detection of LULC using different 

sources of satellite imagery (Lu et al., 2004) 

however, the method used in this study is based on 

the comparison of recent LULC data against the 

classified map produced in 2009. In order to carry 

out the change detection analysis, changes in areal 

coverage between the 2024 LULC map classified 

map produced using the ML classier were compared 

against those of the previously developed 2009 

LULC map. For classes that were combined in the 

updated 2024 classification scheme used in this 

study, the area of each class merged from the 2009 

LULC map were summed up and compared. 

 
 3. RESULTS 

3.1 ML LULC Classification Maps 

Figure 5 illustrates the preliminary LULC maps 

produced using the ML CART, SVM and RF 

classifiers. From the results, all three classifiers 

indicated that the largest land cover class was non-

forested wetland followed by the forest class. The 

results produced by all three classifiers also 

identified the presence of agriculture in the 

northwestern and southeastern sections of the study 
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Figure 6. Comparison of producer’s (a) and user’s (b) accuracies of the CART, SVM and RF classifiers 

 
Table 4 Overall Accuracy and kappa coefficient of 

maps produced using CART, SVM and RF Classifiers  

 
 

area. The map produced using the CART classifier 

displayed larger water and mangrove classes than 

the other two classifiers. Both the CART and SVM 

classifiers generally had challenges with the 

classification of the coconut class, with the CART 

classifier resulting in much of the coconut class 

being misclassified as agriculture. The CART 

classifier also indicated the presence of small 

sections of coconut within the central areas of the 

Nariva Swamp which was also seen on a smaller 

scale in the map produced using the SVM 

classifier.  

The map produced using the CART classifier 

appeared a lot more scattered than the other maps 

produced, resulting in pixels of forest and non-

forested wetland classes scattered throughout the 

map. The results also indicated that the SVM 

classifier misclassified sections of water as non-

forested wetland, agriculture and mangrove and of 

the three classifiers SVM had the most difficulty 

with the detection of the water class. This classifier 

also misclassified significant amounts of urban 

development as non-forested wetlands.  

While all three classifiers demonstrated some 

difficulty with the classification of the water class, 

the CART classifier performed better than the 

SVM and the RF. CART also outperformed both 

other classifiers when detecting mangroves. All 

three classifiers performed exceptionally well with 

the classification of the forest and sandy beach 

classes.  

The overall results of the comparative 

assessment showed that the RF classifier 

outperformed both the SVM and CART classifiers. 
 

3.2 Accuracy Assessment 

From the data collected in the field, an independent 

subset of GPS points was selected specifically for 

accuracy assessment of the produced maps and was 

not used in the training of the algorithms. Table 4 

depicts the results of the accuracy assessment for all 

three classifiers while Figure 6 presents a 

comparison of the PA and UA for the maps created 

using each of the three classifiers. The results of the 

confusion matrix determined that the overall 

accuracy (OA) of the maps produced using the 

SVM and CART classifiers were both 85% while 

the OA of the map produced with the RF classifier 

was 90%. The kappa coefficients calculated for the 

classified maps were found to be 0.886, 0.893 and 

0.934 for the CART, SVM and RF classifiers 

respectively. The producer’s accuracy (PA) for the 

map produced with the CART classifier was highest 

for the sandy beach class at 100%. The CART 

classifier also resulted in a PA of 90% and above in 

four of the other classes: 92.31% for non-forested 

wetlands; 91.94% for agriculture; 91.30% for forest; 

and 90% for mangrove. Both the water and urban 

development classes had PA over 80% with urban 

development resulting in 85.71% producer’s 

accuracy and water, 81.25%. This classifier, 

however, demonstrated difficulty with the coconut 

class and resulted in a PA of 31.25% in this class. 

The SVM classified map demonstrated high PA for 

four of the classes: 100% for sandy beach, non-

forested wetland and forest; and 93.55% for 
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agriculture. The mangrove class also resulted in a 

good PA with 80%. This classifier struggled 

however, with the water, coconut and urban 

development classes with PA values of 68.75% for 

water and coconut; and 50% for urban 

development. 

The map created using the RF classifier 

demonstrated PA values of over 90% for five of the 

eight classes with forest, non-forested wetland and 

sandy beach all resulting in 100%. The agriculture 

class resulted in a PA of 91.94% and the urban 

development class resulted in a PA of 92.86%. The 

RF classifier demonstrated some level of difficulty 

with the coconut and water classes resulting in a 

PA of 75% for both classes.  

The UA varied for all three classifiers across all 

eight classes. The results of the map created using 

the CART classifier indicated that the UA for four 

of the classes exceeded 90%. The UA for urban 

development, coconut and mangrove were all 

100% while the agriculture class had a UA of 

90.48%. The water and sandy beach classes also 

resulted in good UA values with the water and 

sandy beach classes having UA values of 86.67% 

and 80% respectively. The forest and non-forested 

wetland classes had the lowest UA with 65.63% 

and 66.67% respectively.  

UA calculated for the SVM classified map 

ranged from 48.15% for non-forested wetland to 

100% for coconut. The forest, agriculture and 

mangrove classes had UA of 92%, 93.55% and 

94.12% while the water, sandy beach and urban 

development classes resulted in UA of 84.62%, 

80% and 87.5% respectively.  

The map generated using the RF classifier had 

UA values of over 90% for seven of the eight 

classes. The water, coconut, mangrove and sandy 

beach classes all had accuracies of 100% while 

forest, agriculture and urban development had 

accuracies of 95.83%, 96.61% and 92.86% 

respectively. The lowest UA for this map was seen 

with the non-forested wetland class which had a 

result of 50%. 

The results of the confusion matrix indicated 

that among the three classifiers, the RF classifier 

produced the map with the highest OA and kappa 

coefficient. The RF classified map also 

demonstrated consistently high producer’s and 

user’s accuracies across most classes. Based on 

this, the RF classified map was selected as the final 

2024 classified LULC output map and was used in 

conjunction with the 2009 LULC map to conduct 

the change detection analysis. 

3.2 LULC Change Detection 

The LULC change detection method used in this 

study required that the classes in both the 2024 RF 

classified LULC map and the 2009 classified LULC 

map be homogenized for a more equitable 

comparison. Figure 7 presents a visual comparison 

of the homogenized 2009 classified map (FAO, 

2019) and the 2024 RF classified map. From a 

visual comparison several similarities can be 

observed. The distribution of the different land 

cover types across the study area has remained more 

or less unchanged, however, the distribution of the 

coconut class is notably reduced in the 2024 map. 

The 2024 map also displays a larger mangrove class 

as compared to the 2009 LULC map indicating that 

the mangrove forest coverage has expanded. 

Further analysis of the total areal coverage of 

each land cover class revealed the extent of the 

changes to some of the classes within the Nariva 

Swamp. Table 5 provides a summary of the areas 

(in km2) of each land type for both the 2009 LULC 

map and the 2024 LULC map. From the results it 

can be seen that over the 15-year period there has 

been a decrease in the coconut, forest, agriculture 

and sandy beach classes, while there has been an 

increase in the water, mangrove, non-forested 

wetland and urban development classes. 

The most notable changes observed based on 

LULC areal coverage were for the forest and non-

forested wetland classes. Based on the analysis, 

forest cover decreased by 3.84 km2 within the 

Nariva Swamp while the non-forested wetland 

increased by 3.31 km2. The results for percentage 

area change indicated that the water cover within 

the study area increased by 255.87%. Areas 

classified as urban development were also observed 

to have increased by 116.67%. Coconut coverage 

was observed to have decreased by 80.47% while 

sandy beach decreased by 25.26%. 

 
 4. DISCUSSION  

 

This study utilized PlanetScope SuperDove 

(PSB.SD) 3 m per pixel satellite imagery and 

different machine learning (ML) algorithms to 

develop a 2024 LULC map of the Nariva Swamp 

with a 90% overall accuracy. The use of 

PlanetScope SuperDove (PSB.SD) 3 m per pixel 

satellite imagery was a key contributing factor in 

this outcome as the small study area size benefitted 

from the high spectral and spatial resolution 

imagery in order to better classify smaller target
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Figure 7 Classified LULC maps of the Nariva Swamp, 2009 and 2024 

 

 

Table 5 Change in the area or each land cover class from 2009 to 2024 

 
 

 

 

 

 
 

 

* Encompasses urban residential and 

urban transport classes from the 2009 

classified map 

** Encompasses non-forested wetland, 

freshwater marsh dieback, grasslands 

and former rice areas in succession 

classes from the 2009 classified map 

*** Encompasses active and fallow 

crops classes from the 2009 classified 

map 

**** Encompasses the forest, forested 

wetland and mixed forest classes from 

the 2009 classified map 
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classes. Similar findings were also discussed in 

previous studies which compared the accuracy of 

classified maps using satellite imagery of different 

spatial resolutions (Basheer et al., 2022; Vizzari, 

2022). A review of previous studies which utilized 

satellite imagery of lower spatial resolution, such as 

Landsat-8 or Sentinel-2 satellite, demonstrated that the 

overall accuracy of classified maps using these data 

sources were generally high for larger study areas but 

did not perform as well in smaller study areas (Wang 

et al., 2019; Loukika et al., 2021; Aldiansyah & 

Saputra, 2022; Basheer et al., 2022; Vizzari, 2022).  

The ML algorithms used in this methodology were 

based on their performance in previous studies. Several 

studies have shown that the CART, SVM and RF ML 

algorithms tend to be highly reliable at producing high 

accuracy LULC maps of OA above 80% (Wang et al., 

2019; Loukika et al., 2021; Aldiansyah & Saputra, 

2022; Basheer et al., 2022; Vizzari, 2022). This was 

further reflected in the results obtained in this study 

with all three classifiers producing maps with OA 

above 80%. Further, the results of this study 

demonstrated that the RF classifier produced the best 

results with an OA of 90%. This was also seen in other 

studies which also compared the performance of ML 

classifiers in other wetland ecosystems (Wang et al., 

2019). Generally, the RF classifier has been 

demonstrated to perform best with classification of 

largely vegetated areas and is able to handle a larger 

number of features and a smaller number of samples 

than both the CART and SVM classifiers (Wang et al., 

2019). The SVM classifiers have been shown to 

perform better in areas with higher urban development 

(Basheer et al., 2022) and may be more suited for use 

in those environments. CART classifiers have also been 

shown to perform well in several situations (Basheer et 

al., 2022), however, these classifiers may be prone to 

overfitting which can reduce their accuracy (Qian et 

al., 2014). This was demonstrated in the results of this 

study as the overfitting of data from the CART 

classifier likely resulted in the lower PA and higher UA 

seen for several LULC classes.  

From the results of the study, it was seen that all 

three classifiers displayed varying levels of difficulty 

with classifying the coconut class. This could have 

been due to the more scattered distribution of the 

coconut land cover which was observed during the field 

data collection. Several areas of coconut were observed 

interspersed amongst other LULC classes such as 

agriculture and non-forested wetland which could have 

resulted in some levels of misclassification. 

Comparable challenges were also noted in previous 

studies (Pham et al., 2022) which would have 

examined similar LULC classes along coastal areas. 

Comparison with the LULC map developed in 2009 

revealed that the percentage decrease in coconut 

coverage was quite significant in the 2024 LULC map, 

and the smaller land cover area would have also 

increased the risk of misclassification by the algorithms. 

The 2009 LULC map was developed using a 

combination of traditional approaches, including visual 

interpretation and unsupervised classification of Landsat 

satellite imagery. While these methods and data were 

widely used at the time and produced a good 

understanding of land cover changes, they were limited 

by the lower spatial and spectral resolution of the 

imagery as well as the subjective nature of the visual 

interpretation procedure (Rozenstein & Karnieli, 

2011). In contrast, the approach used to develop the 

2024 LULC map offered significant advantages, 

including higher spatial and spectral resolutions, which 

allowed for more precise delineation of smaller land 

cover features and reduced risk of misclassification 

(Vizzari, 2022). However, the RF approach also has its 

limitations compared to the 2009 approach, particularly 

its reliance on high-quality training data (Mashala et 

al., 2023).  

The change analysis performed as part of this study 

was essential to understanding how the LULC of the 

Nariva Swamp has changed over time. The results 

indicated that there was a significant increase in the non-

forested wetland and a decrease in forest. This may 

suggest an expansion of the non-forested wetlands 

within the Nariva Swamp at the expense of forest. 

Similar findings were also noted in another study in 

India which noted a decrease in forest cover and an 

increase in non-forest cover (Thakur et al., 2024). 

Other notable changes included an increase in both 

water and urban coverage. The increased water 

coverage could have been as a result of misclassification 

as the performance of the RF classifier was low when 

detecting water areas. Other factors may also be 

responsible for the calculated increase in water class 

which may include climate change and sea level rise 

(Cahoon et al., 2019) leading to an actual increase in 

water coverage in the region. The changes to urban 

development may also be of concern as this may be an 

indicator of unregulated development within the Nariva 

Swamp.  

While the findings of the study offer valuable insight 

into the use of ML and RF for the creation of LULC 

maps of the Nariva Swamp, it is important to 

acknowledge several limitations and potential 

improvements that could be made regarding the study. 

Obtaining field data sample points proved to be 

especially challenging. Access to the study site on foot 

was limited to specific sections of the southeastern and 

northwestern parts of the swamp and along the eastern 

boundary. This introduced a level of accessibility bias 

into the study and resulted in some difficulty with 

obtaining points representative of other areas within the 

Nariva Swamp. To compensate for this to some extent, 
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further sample points were generated from high 

resolution Google Maps imagery in conjunction with 

observations that were made while conducting the 

ground truthing exercise and additional satellite 

imagery. This method has also been used in other 

studies to achieve a similar result (Vizzari, 2022). The 

use of drones can be one potential strategy for obtaining 

such challenging data for future studies. The requisite 

logistics and approvals associated with the use of this 

technology must be implemented in advance for this to 

be an effective solution. 

 

 5. CONCLUSION  

 

The findings of this study offer a simple and 

efficient approach for generating updated LULC 

maps for the Nariva Swamp which can be adapted 

to other similar environments particularly within 

the Caribbean region. The RF classifier was seen to 

be the superior of the three classifiers used for the 

study, having produced a map of a higher overall 

accuracy and kappa coefficient. This research also 

provides a reliable method for monitoring LULC 

changes within the Nariva Swamp. The comparison 

between the 2024 LULC developed map and the 

2009 LULC existing map revealed increases in 

water, urban, mangrove and non-forested wetland 

coverage in the Nariva Swamp between 2009 and 

2024. It was also revealed that there was a decrease 

in forest cover over the 15-year period. The 

updated 2024 LULC map developed as a result of 

this study as well as the methodological approach 

implemented can be used for monitoring changes in 

the Nariva Swamp moving forward. The overall 

output can serve as an invaluable tool for enhancing 

environmental management strategies, facilitating 

informed decision-making, and ultimately fostering 

the sustainable conservation of the wetland 

ecosystems in the Nariva Swamp. Furthermore, 

factors such as climate change and sea-level rise, 

population growth and socioeconomic variables 

must be considered in future studies and planning. 
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